Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract June 2023 witnessed the hottest, largest, and longest‐lasting heatwave across Mexico and Texas between 1940 and 2023. We apply constructed analogs with multiple linear regression models to quantify the contribution of different drivers to daily temperature anomalies during this heatwave. On the hottest day (20 June), circulation, soil moisture, and their interaction explained 3.82°C (90% CI: 2.72–4.91°C) of the 5.42°C observed anomaly with most of the residual attributed to the thermodynamic effects of long‐term warming. Using CESM2‐LENS2, we find that June 2023‐like patterns are not projected to increase in frequency but will become 1.9°C hotter by the mid‐21st century under SSP3‐7.0. The hottest simulated day with these patterns could produce temperatures >50°C (122°F) across south Texas, representing a low‐likelihood yet physically plausible worst‐case scenario that could inform disaster preparedness and adaptation planning.more » « less
-
Abstract Droughts over the last century in Southwestern North America (SWNA) have had severe consequences for people and ecosystems across the region, most recently during the early 21st‐century megadrought (2000–2022). The 20thcentury, however, was bracketed by two extended pluvials that also had significant impacts in the region. We use a 1,224 years (800–2023 CE) record of observed and reconstructed soil moisture, in concert with a paleoclimate reanalysis product, to place the 20th‐century pluvials in a longer‐term context and investigate the occurrence and dynamics of similar events in the Common Era. Analyses of the soil moisture reconstruction demonstrate that pluvials and megapluvials are as ubiquitous as droughts and megadroughts over the last millennium. The early (19 years; 1905–1923) and late (22 years; 1978–1999) 20th‐century pluvials rank as the second and first wettest in the record, respectively, positioning these as events on par with the most extreme megadroughts. Pluvials show a strong association with tropical Pacific (warm) sea surface temperatures (SSTs) during the 20thcentury and over the prior millennium, though the role of the tropical Atlantic is much more uncertain and ambiguous. Using a Bayesian hierarchical modeling approach trained on the pre‐industrial period (800–1849 CE), we find that the record setting late 20th‐century megapluvial likely occurred as a consequence of anomalously strong Pacific sea surface temperature forcing. This work establishes pluvial and megapluvial events as intrinsic components of Common Era hydroclimate variability in SWNA, comparable in importance to droughts and megadroughts.more » « less
-
Abstract In summer 2021, 90% of the western United States (WUS) experienced drought, with over half of the region facing extreme or exceptional conditions, leading to water scarcity, crop loss, ecological degradation, and significant socio‐economic consequences. Beyond the established influence of oceanic forcing and internal atmospheric variability, this study highlights the importance of land‐surface conditions in the development of the 2020–2021 WUS drought, using observational data analysis and novel numerical simulations. Our results demonstrate that the soil moisture state preceding a meteorological drought, due to its intrinsic memory, is a critical factor in the development of soil droughts. Specifically, wet soil conditions can delay the transition from meteorological to soil droughts by several months or even nullify the effects of La Niña‐driven meteorological droughts, while drier conditions can exacerbate these impacts, leading to more severe soil droughts. For the same reason, soil droughts can persist well beyond the end of meteorological droughts. Our numerical experiments suggest a relatively weak soil moisture‐precipitation coupling during this drought period, corroborating the primary contributions of the ocean and atmosphere to this meteorological drought. Additionally, drought‐induced vegetation losses can mitigate soil droughts by reducing evapotranspiration and slowing the depletion of soil moisture. This study highlights the importance of soil moisture and vegetation conditions in seasonal‐to‐interannual drought predictions. Findings from this study have implications for regions like the WUS, which are experiencing anthropogenically‐driven soil aridification and vegetation greening, suggesting that future soil droughts in these areas may develop more rapidly, become more severe, and persist longer.more » « less
-
Abstract Future flood risk assessment has primarily focused on heavy rainfall as the main driver, with the assumption that projected increases in extreme rain events will lead to subsequent flooding. However, the presence of and changes in vegetation have long been known to influence the relationship between rainfall and runoff. Here, we extract historical (1850–1880) and projected (2070–2100) daily extreme rainfall events, the corresponding runoff, and antecedent conditions simulated in a prominent large Earth system model ensemble to examine the shifting extreme rainfall and runoff relationship. Even with widespread projected increases in the magnitude (78% of the land surface) and number (72%) of extreme rainfall events, we find projected declines in event‐based runoff ratio (runoff/rainfall) for a majority (57%) of the Earth surface. Runoff ratio declines are linked with decreases in antecedent soil water driven by greater transpiration and canopy evaporation (both linked to vegetation greening) compared to areas with runoff ratio increases. Using a machine learning regression tree approach, we find that changes in canopy evaporation is the most important variable related to changes in antecedent soil water content in areas of decreased runoff ratios (with minimal changes in antecedent rainfall) while antecedent ground evaporation is the most important variable in areas of increased runoff ratios. Our results suggest that simulated interactions between vegetation greening, increasing evaporative demand, and antecedent soil drying are projected to diminish runoff associated with extreme rainfall events, with important implications for society.more » « less
-
During summer 2010, exceptional heat and drought in western Russia (WRU) occurred simultaneously with heavy rainfall and flooding in northern Pakistan (NPK). Here, we use the Great Eurasian Drought Atlas (GEDA), a new 1,021 year tree-ring reconstruction of summer soil moisture, to investigate the variability and dynamics of this exceptional spatially concurrent climate extreme over the last millennium. Summer 2010 in the GEDA was the second driest year over WRU and the largest wet–dry contrast between NPK and WRU; it was also the second warmest year over WRU in an independent 1,015 year temperature reconstruction. Soil moisture variability is only weakly correlated between the two regions and 2010 event analogues are rare, occurring in 31 (3.0%) or 52 (5.1%) years in the GEDA, depending on the definition used. Post-1900 is significantly drier in WRU and wetter in NPK compared to previous centuries, increasing the likelihood of concurrent wet NPK–dry WRU extremes, with over 20% of the events in the record occurring in this interval. The dynamics of wet NPK–dry WRU events like 2010 are well captured by two principal components in the GEDA, modes correlated with ridging over northern Europe and western Russia and a pan-hemispheric extratropical wave train pattern similar to that observed in 2010. Our results highlight how high resolution paleoclimate reconstructions can be used to capture some of the most extreme events in the climate system, investigate their physical drivers, and allow us to assess their behavior across longer timescales than available from shorter instrumental records.more » « less
-
Abstract Anthropogenic climate change has already affected drought severity and risk across many regions, and climate models project additional increases in drought risk with future warming. Historically, droughts are typically caused by periods of below‐normal precipitation and terminated by average or above‐normal precipitation. In many regions, however, soil moisture is projected to decrease primarily through warming‐driven increases in evaporative demand, potentially affecting the ability of negative precipitation anomalies to cause drought and positive precipitation anomalies to terminate drought. Here, we use climate model simulations from Phase Six of the Coupled Model Intercomparison Project (CMIP6) to investigate how different levels of warming (1, 2, and 3°C) affect the influence of precipitation on soil moisture drought in the Mediterranean and Western North America regions. We demonstrate that the same monthly precipitation deficits (25th percentile relative to a preindustrial baseline) at a global warming level of 2°C increase the probability of both surface and rootzone soil moisture drought by 29% in the Mediterranean and 32% and 6% in Western North America compared to the preindustrial baseline. Furthermore, the probability of a dry (25th percentile relative to a preindustrial baseline) surface soil moisture month given a high (75th percentile relative to a preindustrial baseline) precipitation month is 6 (Mediterranean) and 3 (Western North America) times more likely in a 2°C world compared to the preindustrial baseline. For these regions, warming will likely increase the risk of soil moisture drought during low precipitation periods while simultaneously reducing the efficacy of high precipitation periods to terminate droughts.more » « less
-
Abstract Quantifying the spatial and interconnected structure of regional to continental scale droughts is one of the unsolved global hydrology problems, which is important for understanding the looming risk of mega-scale droughts and the resulting water and food scarcity and their cascading impact on the worldwide economy. Using a Complex Network analysis, this study explores the topological characteristics of global drought events based on the self-calibrated Palmer Drought Severity Index. Event Synchronization is used to measure the strength of association between the onset of droughts at different spatial locations within the time lag of 1-3 months. The network coefficients derived from the synchronization network indicate a highly heterogeneous connectivity structure underlying global drought events. Drought hotspot regions such as Southern Europe, Northeast Brazil, Australia, and Northwest USA behave as drought hubs that synchronize regionally and with other hubs at inter-continental or even inter-hemispheric scale. This observed affinity among drought hubs is equivalent to the ‘rich-club phenomenon’ in Network Theory, where ‘rich’ nodes (here, drought hubs) are tightly interconnected to form a club, implicating the possibility of simultaneous large-scale droughts over multiple continents.more » « less
-
Across western North America (WNA), 20th-21st century anthropogenic warming has increased the prevalence and severity of concurrent drought and heat events, also termed hot droughts. However, the lack of independent spatial reconstructions of both soil moisture and temperature limits the potential to identify these events in the past and to place them in a long-term context. We develop the Western North American Temperature Atlas (WNATA), a data-independent 0.5° gridded reconstruction of summer maximum temperatures back to the 16th century. Our evaluation of the WNATA with existing hydroclimate reconstructions reveals an increasing association between maximum temperature and drought severity in recent decades, relative to the past five centuries. The synthesis of these paleo-reconstructions indicates that the amplification of the modern WNA megadrought by increased temperatures and the frequency and spatial extent of compound hot and dry conditions in the 21st century are likely unprecedented since at least the 16th century.more » « less
-
Abstract With continued fossil‐fuel dependence, anthropogenic aerosols over South Asia are projected to increase until the mid‐21st century along with greenhouse gases (GHGs). Using the Community Earth System Model (CESM1) Large Ensemble, we quantify the influence of aerosols and GHGs on South Asian seasonal precipitation patterns over the 21st century under a very high‐emissions (RCP 8.5) trajectory. We find that increasing local aerosol concentrations could continue to suppress precipitation over South Asia in the near‐term, delaying the emergence of precipitation increases in response to GHGs by several decades in the monsoon season and a decade in the post‐monsoon season. Emergence of this wetting signal is expected in both seasons by the mid‐21st century. Our results demonstrate that the trajectory of local aerosols together with GHGs will shape near‐future precipitation patterns over South Asia. Therefore, constraining precipitation response to different trajectories of both forcers is critical for informing near‐term adaptation efforts.more » « less
An official website of the United States government
